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Abstract

It is shown that the quantum instanton bundle introduced in [Commun. Math. Phys. 226 (2002)
419] has a bijective canonical map and is, therefore, a coalgebra Galois extension.
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1. Introduction

Since the beginning of the theory of quantum groups lot of efforts have been devoted
to develop a full quantum analogue of the notion of principal bundle. For that purpose the
key feature turns out to be a characterization of freeness and transitivity on the fiber of the
group action through the bijectivity of the so-called canonical map. In[17] the relevant
role of this map in the context of Hopf algebras was stressed and a theory of algebraic
quantum principal bundles with a Hopf algebra as structure group was built up. A notion
related to such a Hopf–Galois property but on the level of differential calculi and principal
connections was partially used in[8,12]. Later on several examples of quantum principal
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bundles have been shown to be indeed Hopf–Galois extensions and thus to fully deserve
their name (see, e.g.[11] for a list).

However many interesting examples of deformations of principal bundles coming from
quantum groups could not be expressed in that framework. For instance, a quantum homo-
geneous space is a Hopf–Galois extension only if it is a quotient by a quantum subgroup,
which is a very rare case. It is therefore necessary to consider a more general object in place
of the structure group. In[17] bundles with acoalgebra structure groupobtained as quotient
of Hopf algebras by a coideal and right ideal were first considered. Later on it was shown in
[4] that all Podlés spheres can be obtained as quotients by acoalgebra subgroup ofSUq(2).
Such results were further developed in[5,6,9] to the idea of coalgebra–Galois extensions
and, more recently, in[7] into a possible definition of coalgebra principal bundles. It has to
be stressed that the bijectivity of the canonical map retains a crucial role in the theory.

Approximately at the same time asemiclassical(i.e. Poisson) interpretation for this
approach was given in[10] and[1], in terms of coisotropic subgroups of a Poisson–Lie
group. The semiclassical point of view turned out to be very useful as it allowed in[2]
to describe a quantum group version of the SU(2)-principal bundleS

7 → S
4. In [3] a

description of this bundle in terms of quantized enveloping algebras is given.
It is then quite natural to ask whether this construction can be considered an algebraic

quantum principal bundle, the key point being a verification of the bijectivity of the canonical
map, as explained. In this paper we will prove that property. Let us remark that the quantum
instanton bundle is far more difficult to deal with than any other known example arising
from quantum groups, for at least three different reasons: the base space is not a quantum
homogeneous space (just a double coset of Uq(4)), the structure group is only a coalgebra
and, lastly, such coalgebra corresponds to a non-abelian group.

Once the Galois property is proven the next natural step to understand the geometry
of this quantum principal bundle is to analyze the quantum vector bundles associated to
corepresentations of the structure coalgebra. The bijectivity of the canonical map proven
in this paper together with the results contained in[7] and in the work in preparation[16]
allow to conclude that they are finitely generated and projective modules. In the last section
we will explain this point.

Our results and the explicit expression of theK-homology generators given in[2] are all
the needed ingredients to apply the character formula in[7] to compute the charges of these
bundles, in analogy to the computations carried out for line bundles on Podleś sphere, both
in the Hopf–Galois[13] and in the coalgebra–Galois case[14].

2. The quantum four-sphere Σ4q

In this section we recall the basic facts necessary to obtain the four-sphereΣ4
q ([2]). The

algebra of polynomial functionsA(Uq(4)) is generated by{tij }4
ij=1,D−1

q and the following
relations:

tiktjk = qtjktik, tkitkj = qtkjtki, i < j, ti�tjk = tjkti�, i < j, k < �,

tiktj� − tj�tik = (q− q−1)tjkti�, i < j, k < �, DqD
−1
q = D−1

q Dq = 1, (1)
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whereDq = ∑
σ∈P4

(−q)�(σ)tσ(1)1 · · · tσ(4)4 is the quantum determinant andP4 is the group
of 4-permutations. It is easy to see thatDq is central. The coproduct is

∆(tij ) =
∑
k

tik ⊗ tkj, ∆(Dq) = Dq ⊗Dq. (2)

For the usual definition of the antipodeS see[15]; the compact real structure forces to
chooseq ∈ R and it reads

t∗ij = S(tji ), D∗
q = D−1

q . (3)

In the following we will denoteκ = ∗ ◦ S.
The algebra of polynomial functionsA(S7

q) on the quantum seven-sphere (see[18]) is

generated as a∗-algebra by{zi = t4i}4
i=1, which verify the following relations:

zizj = qzjzi (i < j), z∗j zi = qziz
∗
j (i �= j),

z∗kzk = zkz
∗
k + (1 − q2)

∑
j<k

zjz
∗
j ,

4∑
k=1

zkz
∗
k = 1. (4)

TheA(Uq(4))-coaction onS7
q reads

∆(zi) =
∑
j

zj ⊗ tji , ∆(z∗i ) =
∑
j

z∗j ⊗ t∗ji . (5)

DefineR = RA(Uq(4)), where

R= Span{t13, t31, t14, t41, t24, t42, t23, t32, t11 − t44, t12 + t43, t21 + t34, t22 − t33,

t11t22 − qt12t21 − 1}.
It is easy to verify thatR is aκ-invariant, right ideal, two sided coideal. In the sequel we shall
denoteC := A(Uq(4))/R the quotient andr : A(Uq(4)) → C the canonical projection.

By constructionC is a coalgebra, a rightA(Uq(4))-module and it inherits an involu-
tive, antilinear mapκC. In [2] it has been shown thatC is isomorphic toA(SUq(2)) as
coalgebras, and that the isomorphism intertwinesκC with ∗ ◦ S onA(SUq(2)). Using this
isomorphism we could transfer toC the algebra structure ofA(SUq(2)) (and thus of a Hopf
algebra) but the projection mapr : A(Uq(4)) → C would not be a homomorphism, e.g.
r(t11t43) �= r(t11)r(t43). In the rest of the paper we actually assume this point of view, and
identifyC withA(SUq(2)). Althoughr does not respect the algebra structureC has a right
A(Uq(4))-module structure, that will be important for us, defined by

r(t) · t′ := r(tt′). (6)

We introduce inC the usualC-linear basis〈rk,m,n|k ∈ Z;m, n ∈ N〉, where

rk,m,n =


r(tk11t

m
12t

n
21), k ≥ 0,

r(tm12t
n
21t

−k
22 ), k < 0.

(7)
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In the following lemma we collect some useful relations concerning theA(Uq(4))-module
structure ofA(SUq(2)).

Lemma 1. The following relations are valid fork ∈ Z andm, n ∈ N:

rk,m,n ·
(
t∗11 t∗12

t∗21 t∗22

)
= rk,m,n ·

(
t22 −qt21

−q−1t12 t11

)
,

rk,m,n ·
(
t∗33 t∗34

t∗43 t∗44

)
= rk,m,n ·

(
qm+nt11 q1−kt12

q−(1+k)t21 q−(m+n)t22

)

− θ(k)q(1 − q−2k)r(k−1),m,n ·
(

0 0

0 t12t21

)

− θ(−k)qm+n−1(1 − q−2k)r(k+1),m,n ·
(
t12t21 0

0 0

)
,

rk,m,n ·
(
t33 t34

t43 t44

)
= rk,m,n ·

(
q−(m+n)t22 −q−kt21

−q−kt12 qm+nt11

)

− θ(k)q(1 − q−2k)r(k−1),m,n ·
(
t12t21 0

0 0

)

− θ(−k)qm+n−1(1 − q−2k)r(k+1),m,n ·
(

0 0

0 t12t21

)
,

whereθ(k) = 1 for k ≥ 0 andθ(k) = 0 for k < 0.

Proof. They are obtained by using the following relations valid fori < k, j < 1:

tnij tkl = tklt
n
ij − q−1(1 − q2n)til tkjt

n−1
ij , tij t

m
kl = tmkl tij + q(1 − q−2m)til tkjt

m−1
kl . (8)

�

By construction

∆r := (id ⊗ r)∆ : A(S7
q) → A(S7

q)⊗A(SU(2)q)

defines a rightA(SU(2)q)-coaction onA(S7
q). It satisfies∆r(uv) = ∆r(u)∆(v), for u, v ∈

A(S7
q). The space of functions on the quantum four-sphereΣ4

q is the space of coinvariants

with respect to this coaction, i.e.A(Σ4
q) = {a ∈ A(S7

q)|∆r(a) = a ⊗ r(1)}. The algebra

A(Σ4
q) is generated by{a, a∗, b, b∗, R}, where

a = z1z
∗
4 − z2z

∗
3, b = z1z3 + q−1z2z4, R = z1z

∗
1 + z2z

∗
2.
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They satisfy the following relations:

Ra= q−2aR, Rb= q2bR, ab = q3ba, ab∗ = q−1b∗a,
aa∗ + q2bb∗ = R(1 − q2R), aa∗ = q2a∗a+ (1 − q2)R2,

b∗b = q4bb∗ + (1 − q2)R.

3. The SUq(2) principal bundle S
7
q over Σ4q

In this section we investigate if the structure introduced above forms a coalgebra–Galois
extension, which is essential to define an (algebraic) quantum principal bundle.

LetC be a coalgebra,P a rightC-comodule algebra with the multiplicationmP : P⊗P →
P and coaction∆R : P → P ⊗ C. LetB ⊆ P be the subalgebra of coinvariants, i.e.B =
{b ∈ P |∆R(bp) = b∆R(p),∀p ∈ P}. The canonical leftP-linear rightC-colinear mapχ
is defined by

χ := (mP ⊗ id) ◦ (id ⊗B ∆R) : P ⊗B P → P ⊗ C,p′ ⊗B p �→ p′∆Rp.

If χ is bijective one says that these data form a coalgebra–Galois extension (see[6]). In this
case the translation map is defined as

ϑ : C → P ⊗B P, ϑ(h) =
∑
[h]

h[1] ⊗B h
[2] := χ−1(1 ⊗ h). (9)

If C is a Hopf algebra and∆R is an algebra homomorphism, the above structure is called
a Hopf–Galois extension. In this case the translation mapϑ is always determined by its
values on the algebra generators ofC; in fact one has that

ϑ(hh′) =
∑

[h][h′]
h′[1]h[1] ⊗B h

[2]h′[2] . (10)

We specify now the above framework to our case ofP = A(S7
q), B = A(Σ4

q), C =
A(SUq(2)) and∆R = ∆r. Since∆r is not an algebra homomorphism we are in the more
general setting of coalgebra extensions. To answer the question of bijectivity ofχwe cannot
simply define the translation map on generators and then use formula(10)to extend it to the
wholeC. We shall instead generalize(10) by employing theA(Uq(4))-module structure
defined in(6). By considering the coaction∆ofA(Uq(4))onA(S7

q), we define the following

rightA(S7
q)-module structure onA(S7

q)⊗A(SUq(2)):

(u⊗ x) � v = uv(0) ⊗ x · v(1), u, v ∈ A(S7
q), x ∈ A(SUq(2)),

where∆(v) = ∑
(v) v(0) ⊗ v(1).

By direct computation one can verify thatχ is in fact also rightA(S7
q)-linear with respect

to �.
The following proposition is the main result of the paper.

Proposition 2. Let C = A(SUq(2)) � A(Uq(4))/R, P = A(S7
q), B = A(Σ4

q) and
∆R = ∆r be defined as above. Then the canonical mapχ is bijective.
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Proof. First we prove the surjectivity ofχ by giving a right inverse, i.e. a mapτ : P⊗C →
P ⊗B P such thatχ ◦ τ = id. We will define it on 1⊗ rk,m,n and then extend it by left
P-linearity onP ⊗ C.

We give an iterative definition. Letτ(1⊗r(1)) = 1⊗B1. Next assume that for anyk,m, n
such that|k|+m+n ≤ N, τk,m,n = τ(1⊗ rk,m,n) is defined so thatχ(τk,m,n) = 1⊗ rk,m,n.
We claim that (in partial analogy to(10)) we can defineτ on all elements of the basis of
degreeN + 1 by the following formulas:

τk+1,m,n = q2+m+nz∗1τk,m,nz1 + q2+m+nz2τk,m,nz
∗
2 + q2z3τk,m,nz

∗
3

+ z∗4τk,m,nz4 for k ≥ 0,

τk−1,m,n = q4z1τk,m,nz
∗
1 + q2z∗2τk,m,nz2 + qm+nz∗3τk,m,nz3

+ qm+nz4τk,m,nz
∗
4 for k ≤ 0,

τk,m+1,n = q2+((|k|−k)/2)z∗1τk,m,nz2 − q3+((|k|−k)/2)z2τk,m,nz
∗
1

+ q1+((|k|+k)/2)z3τk,m,nz
∗
4 − q(|k|+k)/2z∗4τk,m,nz3 for k ∈ Z,

τk,m,n+1 = −q3+((|k|−k)/2)z1τk,m,nz
∗
2 + q2+((|k|−k)/2)z∗2τk,m,nz1

− q(k+|k|)/2z∗3τk,m,nz4 + q1+((k+|k|)/2)z4τk,m,nz
∗
3 for k ∈ Z. (11)

The proof of the good definition ofτ is postponed to Section 4. Let us applyχ to r.h.s. of
the first equality of(11). The use of the left and rightP-linearity ofχ yields

4∑
j=1

(q2+m+nz∗1zj ⊗ rk,m,n · tj1 + q2+m+nz2z
∗
j ⊗ rk,m,n · t∗j2 + q2z3z

∗
j ⊗ rk,m,n · t∗j3

+ z∗4zj ⊗ rk,m,n · tj4) = qm+n(q2z∗1z1 + q2z2z
∗
2 + q2z3z

∗
3 + z∗4z4)⊗ rk,m,n · t11

+ (q2+m+nz∗1z2 − q3+m+nz2z
∗
1 + q1−kz3z

∗
4 − q−kz∗4z3)⊗ rk,m,n · t21

= qm+n ⊗ rk,m,n · t11 = 1 ⊗ rk+1,m,n,

where in the penultimate equality we have used(4).
Similarly,χ applied to r.h.s. of the second equality of(11)yields (k < 0)

(q4z∗1z1 + q2z∗2z2 + z∗3z3 + z4z
∗
4)⊗ rk,m,n · t22 + (−q3z1z

∗
2 + q2z∗2z1

− qm+n−kz∗3z4 + q1+m+n−kz4z
∗
3)⊗ rk,m,n · t12 = 1 ⊗ rk,m,n · t22 = 1 ⊗ rk−1,m,n.

Next, the r.h.s. of the third equality of(11), after application ofχ yields

q(|k|−k)/2(q2z∗1z1 + q2z2z
∗
2 + q2z3z

∗
3 + z∗4z4)⊗ rk,m,n · t12

+ [q2+((|k|−k)/2)(z∗1z2 − qz2z
∗
1)+ q((k+|k|)/2)−m−n(qz3z

∗
4 − z∗4z3)] ⊗ rk,m,n · t22

+ θ(k)q1+((k+|k|)/2)(q−2k − 1)(qz3z
∗
4 − z∗4z3)⊗ rk−1,m,n · t12t21 = 1 ⊗ rk,m+1,n.
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Finally,χ applied to r.h.s. of the fourth equality of(11)yields

q(|k|−k)/2(q4z∗1z1 + q2z∗2z2 + z∗3z3 + z4z
∗
4)⊗ rk,m,n · t21

+ q(|k|−k)/2(−q3z1z
∗
2 + q2z∗2z1 − qk+m+nz∗3z4 + q1+k+m+nz4z

∗
3)⊗ rk,m,n · t11

+ θ(−k)q(|k|+k)/2qm+n(1 − q−2k)(q−1z∗3z4 − z4z
∗
3)⊗ rk+1,m,n · t12t21

= 1 ⊗ rk,m,n+1.

The mapτ is then defined by giving its action on the basis and it satisfiesχ ◦ τ = id so that
χ is surjective.

Injectivity ofχ is a consequence of theP-linearity of the mapτ, whose proof is postponed
to the next section. In fact we have thatτ(χ(a⊗ b)) = τ(aχ(1⊗ 1) � b) = aτ(1⊗ r(1))b =
a⊗ b, so thatτ = χ−1. �

4. Proof of good definition and P-linearity of τ

The relations(11)provide an iterative definition of the mapτ once we prove thatτk,m,n is
uniquely defined starting fromτk−1,m,n,τk,m−1,n,τk,m,n−1. We will prove the good definition
of τ on the linear basisrk,m,n by induction on|k| + m + n. TheP-linearity will come as
an easy consequence of the induction procedure. Since computations are quite heavy and
long we will limit ourselves to sketch the proof.

We suppose thatτ(1⊗ rk,m,n) = τk,m,n is well defined for|k| +m+ n ≤ N and that the
following relations are true for|k| +m+ n ≤ N − 1:

q−(m+n)z1τk+1,m,n + z2τk,m,n+1 = τk,m,nz1,

−q−kz3τk,m,n+1 + z4τk+1,m,n = τk,m,nz4,

−qz∗1τk,m,n+1 + z∗2q
−(m+n)τk+1,m,n = τk,m,nz

∗
2,

z∗3τk+1,m,n + z∗4q
−(1+k)τk,m,n+1 = τk,m,nz

∗
3,

k ≥ 0, (12)

q−(m+n)z3τk−1,m,n − z4τk,m+1,n = τk,m,nz3,

qkz1τk,m+1,n + z2τk−1,m,n = τk,m,nz2,

qz∗3τk,m+1,n + z∗4q
−(m+n)τk−1,m,n = τk,m,nz

∗
4,

z∗1τk−1,m,n − z∗2q
−(1−k)τk,m+1,n = τk,m,nz

∗
1,

k ≤ 0, (13)

and the following ones for|k| +m+ n ≤ N:

qm+nz2τk−1,m,n + qm+n+1τk−1,m+1,nz1 = τk,m,nz2,

z3τk−1,m,n − q−kτk−1,m+1,nz4 = τk,m,nz3,

qm+nz∗1τk−1,m,n − qm+nτk−1,m+1,nz
∗
2 = τk,m,nz

∗
1,

z∗4τk−1,m,n + q1−kτk−1,m+1,nz
∗
3 = τk,m,nz

∗
4,

k ≥ 1 (14)
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qm+nz4τk+1,m,n − qm+n+1τk+1,m,n+1z3 = τk,m,nz4,

z1τk+1,m,n + qkτk+1,m,n+1z2 = τk,m,nz1,

qm+nz∗3τk+1,m,n + qm+nτk+1,m,n+1z
∗
4 = τk,m,nz

∗
3,

z∗2τk+1,m,n − q1+kτk+1,m,n+1z
∗
1 = τk,m,nz

∗
2.

k ≤ −1 (15)

It is a straightforward computation to verify the induction hypothesis forN = 1 and that
(12), (13), (14), (15) imply the good definition ofτk,m,n for |k| +m+ n = N + 1.

In the following subsections we sketch the proof of(12)and(14). The set ofequations (13)
and(15)are proven along the same lines.

The leftP–linearity of the mapτ is clear by construction. The rightP–linearity is a
direct consequence ofequations (12), (13), (14), (15) as can be seen by writing explicitly
τ((1 ⊗ rk,m,n) � z�) = τ(1 ⊗ rk,m,n)z� for each� and the corresponding one forz∗� .

For eachn ∈ Z let us definean = z1z
∗
4 − qnz2z

∗
3 andbn = z1z3 + qn−1z2z4.

4.1. Proof of (12)

The following lemma is preliminary to get the result.

Lemma 2. Relations(12)are true if and only if the following relations hold fork ≥ 0:

(1 − q2R)τk,m,nz1 = q2−m−nbm+n+kτk,m,nz∗3 + q−m−nak+m+nτk,m,nz4,

Rτk,m,nz4 = q2−kbk+m+nτk,m,nz∗2 + q2+m+na∗
−(m+n+k)τk,m,nz1,

(1 − q2R)τk,m,nz
∗
2 = qkb∗

−(m+n+k)τk,m,nz4 − q3+ka∗
−(m+n+k)τk,m,nz

∗
3,

q4Rτk,m,nz
∗
3 = q2+m+nb∗

−(m+n+k)τk,m,nz1 − q3−kak+m+nτk,m,nz∗2. (16)

Proof. In order to go from(12) to (16), substitute in each of(12) the iterative definition
(11). All the steps can be retraced back to go in the opposite direction. �

Lemma 3. As a consequence of the induction hypothesis, for each(k,m, n) such that
k +m+ n = N − 1 we have

(1 − q2R)τk+1,m,n = z∗4τk,m,nz4 + q2z3τk,m,nz
∗
3,

bk+m+n+1τk+1,m,nq
−m−n = qz3τk,m,nz1 + qkz2τk,m,nz4,

ak+m+n+1τk+1,m,nq
−m−n = q−1z∗4τk,m,nz1 − q1+kz2τk,m,nz

∗
3,

a∗
−(m+n+k+1)τk+1,m,n = q−1z∗1τk,m,nz4 − q−k−1z3τk,m,nz

∗
2,

Rτk+1,m,n = qm+n(z∗1τk,m,nz1 + z2τk,m,nz
∗
2),

b∗
−(m+n+k+1)τk+1,m,n = qz∗1τk,m,nz

∗
3 + q−k−2z∗4τk,m,nz

∗
2. (17)

Proof. For instance, in order to get the first one, multiply on the left byq2z3 and byz∗4 the
fourth and the second equation of(12), respectively; then add and collect the terms. All the
other relations are obtained in a similar way. �
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Let (k,m, n) such thatk+m+ n = N and apply(17) for (k− 1,m, n). For example, in
order to prove the first of(16):

(1 − q2R)τk,m,nz1 = (z∗4τk−1,m,nz4 + q2z3τk−1,m,nz
∗
3)z1

= (q−1z∗4τk−1,m,nz1 − qkz2τk−1,m,nz
∗
3)z4

+ q2(qk−1z2τk−1,m,nz4 + qz3τk−1,m,nz1)z
∗
3

= q−m−n(ak+m+nτk,m,nz4 + q2bk+m+nτk,m,n)z∗3,

where the first and third lines are obtained by using(17) for (k − 1,m, n). All the
other equations (16)are obtained in a similar way. Using Lemma 1 the(12) are then
proved.

4.2. Proof of (13)

In order to prove them we use the strategy adopted for(12). By substituting in(14) the
iterative definition ofτ we get the following Lemma.

Lemma 4. Relations(14)are true if and only if the following equations hold fork ≥ 1

z2τk−1,m,n(1−q2R) = −qk+2z3τk−1,m,na−(k+m+n−1)+qk−1z∗4τk−1,m,nb−(k+m+n−1),

q2z3τk−1,m,nR = qm+nz∗1τk−1,m,nb−(m+n+k−1) − q2−kz2τk−1,m,na
∗
m+n+k−1,

qm+nz∗1τk−1,m,n(1 − q2R) = q2z3τk−1,m,nb
∗
k+m+n−1 + z∗4τk−1,m,na

∗
m+n+k−1,

z∗4τk−1,m,nR = q2+m+nz∗1τk−1,m,na−(m+n+k−1) + q3−kz2τk−1,m,nb
∗
m+n+k−1. (18)

We have the following Lemma:

Lemma 5. As a consequence of the induction hypothesis, for eachk+m+ n = N − 1 we
have

τk,m,n(1 − q2R) = z∗4τk−1,m,nz4 + q2z3τk−1,m,nz
∗
3,

τk,m,nR = qm+n(z2τk−1,m,nz
∗
2 + z∗1τk−1,m,nz1),

τk,m,na−(k+m+n) = q−1z∗4τk−1,m,nz1 − q−kz2τk−1,m,nz
∗
3,

τk,m,nb−(k+m+n) = qz3τk−1,m,nz1 + q−k−1z2τk−1,m,nz4,

τk,m,na
∗
k+m+n = qm+n−1z∗1τk−1,m,nz4 − qk+m+nz3τk−1,m,nz

∗
2,

τk,m,nb
∗
k+m+n = qm+n+1z∗1τk−1,m,nz

∗
3 + qk+m+n−1z∗4τk−1,m,nz

∗
2. (19)

Proof. For example, in order to get the first relation, multiply on the right byz∗2 and byz1
the first and the third of(14), respectively, and then add. The other relations are shown in a
similar way. �
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Let (k,m, n) be such thatk + m + n = N and let us apply(19) for (k − 1,m, n). For
example, in order to show the first of(19):

z2τk−1,m,n(1 − q2R)= z2z
∗
4τk−2,m,nz4 + q2z2z3τk−2,m,nz

∗
3

= qk−1z∗4(q
−kz2τk−2,m,nz4 + qz3τk−2,m,nz1)

− qk+2z3(−q1−kz2τk−2,m,nz
∗
3 + q−1z∗4τk−2,m,nz1)

= qk−1z∗4τk−1,m,nb−(k+m+n−1) − qk+2z3τk−1,m,na−(k−1+m+n),

where we used the first, the third and the fourth of the(19) for (k− 1,m, n). All the others
relations are obtained in a similar way. This concludes the proof of(14).

5. Conclusions

The bijectivity of the canonical map is a key result to study the non-commutative geometry
of this fibration.

To this purpose it is relevant the notion ofprincipal Galois extensionintroduced in[7,14]
which consists of a coalgebra Galois extension with the following additional requirements
(the notations are the same as in the beginning ofSection 3): (i) the entwining mapψ :
C⊗P → P⊗C, c⊗p → χ(χ−1(1⊗c)p) is bijective; (ii) there exists a group like element
e ∈ C such that∆R(p) = ψ(e⊗ p); (iii) there exists a strong connection.

In our case the points (i) and (ii) are easily satisfied. In factψ(c⊗ P) = (1 ⊗ c) � p can
be inverted byψ−1(p⊗c) = c ·S−1(p(1))⊗p(0) ande = r(1). It is crucial thatP = A(S7

q)

is aA(Uq(4))-comodule andC = A(SUq(2)) aA(Uq(4))-module.
A result (Theorem 2.44) contained in the paper in preparation[16] solves the point (iii):

if C is a cosemisimple coalgebra, rightH-module quotient of an Hopf algebraH with
bijective antipode then the surjectivity of the canonical map implies its injectivity and the
existence of a strong connection (or equivariant projectivity in their terminology).

The translation mapϑ can be lifted to� : A(SUq(2)) → A(S7
q) ⊗ A(S7

q) by making
use of the relations(11). We conjecture that the lifted map� is bicolinear with respect to
(1⊗∆r) and(∆̄r⊗1)where∆̄r : p → r(S−1(p(1)))⊗p(0) [14], so that it gives an explicit
expression to the strong connection.

A relevant consequence of principality is that it makes possible, in the quantum setting,
the construction of associated vector bundles. Given, in fact, any finite dimensional left
corepresentation ofC, (ρ : V → C ⊗ V ), the cotensor productP�ρV turns out to be a
finitely generated and projectiveB-module.

In our case for any corepresentation of spinj of A(SUq(2)) one has aquantum vector
bundleand the corresponding class in the positive cone ofK0(A(Σ4

q)).

In [2] it was already computed the vector bundle associated to the spin1
2 corepresentation

and its pairing with theK-homology generators. The non-triviality of this paring allows
to conclude that the coalgebra Galois extension is non-cleft. Using the formula for the
Chern–Connes character given in[7] we have all we need to compute the Chern numbers
of the generic associated bundles. This will be the content of a future work.
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[6] T. Brzezínski, P.M. Hajac, Coalgebra extensions and algebra coextensions of Galois type, Commun. Algebra

27 (1999) 1347–1367.
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