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Abstract

It is shown that the quantum instanton bundle introduced in [Commun. Math. Phys. 226 (2002)
419] has a bijective canonical map and is, therefore, a coalgebra Galois extension.
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1. Introduction

Since the beginning of the theory of quantum groups lot of efforts have been devoted
to develop a full quantum analogue of the notion of principal bundle. For that purpose the
key feature turns out to be a characterization of freeness and transitivity on the fiber of the
group action through the bijectivity of the so-called canonical maglTj the relevant
role of this map in the context of Hopf algebras was stressed and a theory of algebraic
quantum principal bundles with a Hopf algebra as structure group was built up. A notion
related to such a Hopf—Galois property but on the level of differential calculi and principal
connections was partially used [®,12]. Later on several examples of quantum principal
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bundles have been shown to be indeed Hopf—Galois extensions and thus to fully deserve
their name (see, e.flL1] for a list).

However many interesting examples of deformations of principal bundles coming from
quantum groups could not be expressed in that framework. For instance, a quantum homo-
geneous space is a Hopf-Galois extension only if it is a quotient by a quantum subgroup,
which is a very rare case. Itis therefore necessary to consider a more general object in place
of the structure group. If17] bundles with a&oalgebra structure groupbtained as quotient
of Hopf algebras by a coideal and right ideal were first considered. Later on it was shown in
[4] that all PodIé spheres can be obtained as quotientsdnedgebra subgroup &U, (2).

Such results were further developed®6,9] to the idea of coalgebra—Galois extensions
and, more recently, ifY] into a possible definition of coalgebra principal bundles. It has to
be stressed that the bijectivity of the canonical map retains a crucial role in the theory.

Approximately at the same time semiclassicali.e. Poisson) interpretation for this
approach was given ifL0] and[1], in terms of coisotropic subgroups of a Poisson—Lie
group. The semiclassical point of view turned out to be very useful as it allowg?] in
to describe a quantum group version of the SU(2)-principal bufille> S*. In [3] a
description of this bundle in terms of quantized enveloping algebras is given.

It is then quite natural to ask whether this construction can be considered an algebraic
quantum principal bundle, the key point being a verification of the bijectivity of the canonical
map, as explained. In this paper we will prove that property. Let us remark that the quantum
instanton bundle is far more difficult to deal with than any other known example arising
from quantum groups, for at least three different reasons: the base space is not a quantum
homogeneous space (just a double cosetg#)), the structure group is only a coalgebra
and, lastly, such coalgebra corresponds to a non-abelian group.

Once the Galois property is proven the next natural step to understand the geometry
of this quantum principal bundle is to analyze the quantum vector bundles associated to
corepresentations of the structure coalgebra. The bijectivity of the canonical map proven
in this paper together with the results containefirinand in the work in preparatioi6]
allow to conclude that they are finitely generated and projective modules. In the last section
we will explain this point.

Our results and the explicit expression of iehomology generators given [8] are all
the needed ingredients to apply the character formylg ito compute the charges of these
bundles, in analogy to the computations carried out for line bundles on$spiere, both
in the Hopf-Galoig13] and in the coalgebra—Galois c444].

2. The quantum four-sphere =%

In this section we recall the basic facts necessary to obtain the four—sﬁ[}uﬂ@]). The
algebra of polynomial functiond (U, (4)) is generated by }i‘j‘zl, D;l and the following
relations:

fiktik = qtiktik, fitkj = Qljtki, < J, figlik = fiktie, 1< j, k<{¢,
1 . . -1 -1
tiktje — tietik = (¢ — q Dtiktie, 1< j, k<{, DyD,~=D,"D;=1 (1)
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whereD, = Z(rem(—q)“")tg(l)l -+ - 1,a)4 IS the quantum determinant ad is the group
of 4-permutations. It is easy to see tifaf is central. The coproduct is

At =) ik ®1tj,  A(Dg) = Dy ® Dy. 2)
k

For the usual definition of the antipodesee[15]; the compact real structure forces to
choose; € R and it reads

t = S(t), D; =Dt ©)

In the following we will denotec = % o S.
The algebra of polynomial functionA(SZ) on the quantum seven-sphere (§&8)) is

generated as-&algebra by{z; = t4i}f‘:1, which verify the following relations:
nzj=0zz (<)), Zjz=0zz; (@ #)),

4
Zu=uzf+1—q? Zz,-zjf, ZZkZZ =1 4)
j<k k=1

The A(U,(4))-coaction orfS/ reads

A) =) z; ® i, AR =) 6. ®)
J J

DefineR = RA(U,(4)), where

R = Sparit1, 131, t14, ta1, t24, 142, 123, 132, 111 — a4, 112 + 143, 121 + 134, 122 — 133,
112122 — Qtiot2; — 1.

Itis easy to verify thaR is ax-invariant, rightideal, two sided coideal. In the sequel we shall
denoteC := A(U,(4))/R the quotient and : .A(U,(4)) — C the canonical projection.

By constructionC is a coalgebra, a rightl(U,(4))-module and it inherits an involu-
tive, antilinear mapcc. In [2] it has been shown that is isomorphic toA(SU,(2)) as
coalgebras, and that the isomorphism intertwinesvith * o S on A(SU,(2)). Using this
isomorphism we could transfer tthe algebra structure o£(SU, (2)) (and thus of a Hopf
algebra) but the projection map: A(U,(4)) — C would not be a homomorphism, e.g.
r(t11143) # r(t11)r(t43). In the rest of the paper we actually assume this point of view, and
identify C with A(SU,(2)). Althoughr does not respect the algebra strucifirieas a right
A(U,(4))-module structure, that will be important for us, defined by

r(f) -t = rtt). (6)
We introduce inC the usualC-linear basigr®™" |k € Z; m, n € N), where

k m 4n
. r(t)q15t51), k>0,
plof it = (7
r(ipity), k <O.
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In the following lemma we collect some useful relations concerningfig, (4))-module
structure ofA(SU,(2)).

Lemma 1. The following relations are valid fat € Z andm, n € N:
* k
phm.n SERLEP) — ykmn 122 —Qt21
151 159 —q ' m
* * m-+n 1-k
rk,m,n . I33 I3 — rk,m,n . 4q 11 4q 12
IZB tz4 q_(l+k)t21 q—(m+n)t22

— 9(k)q(1 — q_Zk)r(k—l),m,n ) (0 0 >

0 tioto1

—O0(—k)g" (1 — g~ %) KD <t12t21 O) ’

0 0
k(133 134\ _ kmn g "1 —qF oy
143 144 —q*tp g

tiotp1 O
—0(k)g(L — g~ 2)ypk=D.mn, ( 12021 0)

 B(—k)g" (L — g2yt Dmn o 0
0 notn

wheref(k) = 1for k > 0andd(k) = Ofor k < O.

Proof. They are obtained by using the following relations validifet &, j < 1:
dig =t} —q "L—g™nngt ™t g =t +q(L— g P nngty . (8)
O
By construction
A= (d®@nA:AS) - AS)H ® ASUQ),)

defines a right4(SU(2),)-coaction onA(S;). It satisfiesA, (uv) = A, (u)A(v), foru, v e
A(SZ). The space of functions on the quantum four—spfﬁj’és the space of coinvariants
with respect to this coaction, i.etl(EjI‘) ={a € A(SZ)IA,(a) = a ® r(1)}. The algebra
A(x3) is generated bya, a*, b, b*, R}, where

a=z12}— 2225  b=z123+q z2za.  R=z12} + 2225,
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They satisfy the following relations:

Ra= ¢ 2aR Rb= ¢°bR ab = ¢%ba, ab* = ¢~ b*a,
aa* + ¢°bb* = R(1— ¢°R), aa* = ¢°a*a+ (1— ¢°)R?,
b*b = ¢*bb* + (1 — ¢*)R.

3. The SU,(2) principal bundle S over =%

In this section we investigate if the structure introduced above forms a coalgebra—Galois
extension, which is essential to define an (algebraic) quantum principal bundle.
LetC be a coalgebra? arightC-comodule algebra with the multiplicatieny : PQP —
P and coactiomg : P — P ® C. Let B C P be the subalgebra of coinvariants, ile=
{b € P|[Ar(bp) = bAR(p),Vp € P}. The canonical lefP-linear rightC-colinear mapy
is defined by

x:=mpQid)o((dRpAR): PR P — PRC,p Qp p+— p Arp.

If x is bijective one says that these data form a coalgebra—Galois extensi¢s) [skethis
case the translation map is defined as

%:C— PQgP, 9(h) =Y WM @pht =yt n. (9)
[A]
If Cis a Hopf algebra and\g is an algebra homomorphism, the above structure is called

a Hopf—Galois extension. In this case the translation thép always determined by its
values on the algebra generatorgfin fact one has that

o(hi) = > w Mt @ g P2, (10)
[A][A']

We specify now the above framework to our casePot= A(S)), B = A(Z)), C =
A(SU,(2)) andAg = A,. SinceA, is not an algebra homomorphism we are in the more
general setting of coalgebra extensions. To answer the question of bijectiyityefannot
simply define the translation map on generators and then use fofb@)la extend it to the
whole C. We shall instead generaliZ&0) by employing the4(U,(4))-module structure
defined in(6). By considering the coaction of A(U, (4)) onA(SZ), we define the following
right A(S7)-module structure opd(S}) ® A(SU,(2)):

(M®x)<v=UvQ @x- v, U VE A(Sg), X € A(SUq(Z)),

whereA(v) = Z(v) V() ® V(1.

By direct computation one can verify thats in fact also rightA(SZ)-Iinear with respect
to <.

The following proposition is the main result of the paper.

Proposition 2. Let C = A(SU,(2)) ~ A(U,(4)/R, P = A(S)), B = A(Z}) and
AR = A, be defined as above. Then the canonical mapbijective



76 F. Bonechi et al. / Journal of Geometry and Physics 51 (2004) 71-81

Proof. Firstwe prove the surjectivity of by giving arightinverse, i.e.amap: PQ C —
P ®p P such thaty o T = id. We will define it on 1® ™" and then extend it by left
P-linearity onP ® C.

We give an iterative definition. Le{1®r(1)) = 1® 1. Next assume that for akym, n
suchthatk| +m+n < N, tj ., = (1@ rF™") is defined so that (i .,) = 1@ rkm",
We claim that (in partial analogy t10)) we can define on all elements of the basis of
degreeN + 1 by the following formulas:

24+m-+n 2+m+n

Tk+1,mn =¢q Zifk,m,nzl +q
+ 24Tk mnza for k>0,

2
22TkmnZs + 4 23Tk m,n 23

4 2
Tk—1,mn =4¢q Zlfk,m,nzak_ +q ZE‘L'k,m,nZZ + qm+nZ§7:k,m,nZ3
+q" " 24t mazy for k <0,

Temiin =q> KR/ 2y o nzo — T KD pory 02k
N q1+<<|k\+k)/2>13tk’m’n = g2z for ke 7,

3+((kl1-k)/2)
(k+1k1)/2 %

2 Thmnds +q? T K02 g 021

LHHKD/D 2y 2% foOr k € Z. 11)

Tk,m,n+1= —4q

—q 23Tk,m,n24 +¢q

The proof of the good definition af is postponed to Section 4. Let us applyo r.h.s. of
the first equality o{11). The use of the left and righit-linearity of x yields

Z(qZ—i-m-l-nZ*Z]@rkmn t] +q2+m+nz Z ®rkmn 12+q Z3Z ®rkmn ~l‘;<3
k,m,n

+ 7 @R 1) = ¢ (g2 11+61 2225 + q%235 + Z4za) O 1

+ (g% gtz — P 0zt + gt R 2agh — g F 2 @

— qm+n ® rk,m,n =1 rk+1,m,n’

<111

k,m,n

<121

where in the penultimate equality we have uséd
Similarly, x applied to r.h.s. of the second equality(df) yields ¢ < 0)

k,m.,n

(%2521 + qP2hzo + 28z + zaz)) @ FFM - top + (—qPzazb + ¢Pehna
qm+n —k *14 +ql+m+n kZ4Z*) ® rkm n to= 1® rkm n tpp = 1 rk 1,m, n

Next, the r.h.s. of the third equality ¢f1), after application ofy yields

WP (P52 + qProzh + qPasy + Zhza) @ P 11p
H[2HUHR/ (22— oty 4 UKD /2mmn (g w1 @ oy
+ 0(k) g EFID/2) (=2 1) (qzszy — Zhz3) @ rAEM oty = 1@ phmtLn,
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Finally, x applied to r.h.s. of the fourth equality (1) yields

k,m.,n

(k)72 4 .

+qUM=R2(_ 32125 + qPzbza — T hza 4+ gE T 228y @ rmen g
+0(—=k)gWIHR2gmn (1 — g7 (g7 2%z — zazd) @ KT 1ty
=1® rk,m,n+l

q B2+ q°Sze + i+ ) ®r

The mapr is then defined by giving its action on the basis and it satigfies = id so that
X is surjective.

Injectivity of x is a consequence of thielinearity of the map, whose proof is postponed
to the next section. In fact we have th@k(a ® b)) = t(ax(1® 1) <b) = at(l® r(1))b =
a®b, sothatr = x 1. O

4. Proof of good definition and P-linearity of =

The relationg11) provide an iterative definition of the magnce we prove thak ,, , iS
uniquely defined starting from—_1m.n» Tk.m—1.n, Tk.m.n—1. WWe will prove the good definition
of z on the linear basig“™" by induction on|k| + m + n. The P-linearity will come as
an easy consequence of the induction procedure. Since computations are quite heavy and
long we will limit ourselves to sketch the proof.

We suppose that(l ® phmny — Tk.m.n 1S Well defined fork| +m 4+ n < N and that the
following relations are true fok| +m +n < N — 1:

q_(m+n)zlfk+l,m,n + 22Tk, m,n+1 = Tk,m,nZ1
—k
—q " Z23Tk,mn+1 t 24Tk+1,m,n = Thk,m,nZ4s

% o —(m-+n) * k=0, (12)
_qzifk,m,n+l + 229 Tk+1,m,n = Tk,m,nZ2s
—(1+k
Z§Tk+1,m,n + qu 1+ )Tk,m,n+l = Tk,m,nZ§7
q_(m+n)z3fkfl,m,n — 24Tk,m+1,n = Tk,m,n<3,
qkzlfk,m+1,n + 22Tk—1,m,n = Tk,m,n22, k<0, (13)

ngtk,m-l-l,n + qui(m+n)fk—l,m,n = Tk,m,nsz

Zalifk—l,m,n - Z;qi(lik)fk,m—l-l,n = 7:k,m,nz?
and the following ones fok| +m +n < N:

m+n m-+n+1

q 22Tk—1,m,n + ¢

—k
BTk—-1,mn — 4 ~“Tk—1,m+1,n4 = Tk,m,ni3

Tk—1,m+1,n31 = Tk,m,nl2,

m-+n % m-—+n * * k 2 1 (14)
q 21Tk—1mn — 4 Tk—1,m+1nls = Tk,m,nlq>

1-k
szk—l,m,n +gq Tk—l,n1+1,nZ§ = tk,m,nzz’
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1
d" 24Tkt mn — @ O L4123 = ThomonZa,

k
Z1Tk+1m,n + 4 Thktlm,n+122 = Thk,m,nZ1,

m-+
q

1+k
szk—&-l,m,n —q + Tk+l,m,n+lZI = Tk,m,nzz-

m—n k == 1 (15)

nzgfk-i-l,m,n +gq Tk+l,m,n+lzz = tk,m,nzg’

Itis a straightforward computation to verify the induction hypothesig\fet 1 and that
(12), (13), (14), (15)imply the good definition ofy ,,, , for |k| +m +n = N + 1.

In the following subsections we sketch the proofiff)and(14). The set okquations (13)
and(15) are proven along the same lines.

The left P—linearity of the mapr is clear by construction. The riglR—linearity is a
direct consequence efjuations (12)(13), (14), (15) as can be seen by writing explicitly
(L Q ™™y az4) = 1(1 @ rF™ M)z, for eacht and the corresponding one far.

For eachn € Z let us definer, = z12} — ¢"z225 andb, = z1z3 + ¢"1zaza.

4.1. Proof of (12)
The following lemma is preliminary to get the result.
Lemma 2. Relations(12) are true if and only if the following relations hold fér> 0:

2 2 m— —m—
(1—6] R)Tk,m,nzlzq " nbm+n+kfk,m,nZ§+q " nak+m+nfk,m,nz47

2+m+n

2—k * *
RTk,m,nZ4 =dq bk+m+nfk,m,n12 +q A_ (m+n+k) Tkom,nZls

2 * k g% 3+k % *
A= 4" R Tmnzz = q b (i piieyThmnia — q * A_ (m-tn-+k) Tkym,n<3s

2+m+n b*

4 3—k
q RTk,m,nZ§ =dq (m-+n+k) Tkm,nZl — ¢ ak+m+nfk,m,nZ§~ (16)

Proof. In order to go from(12) to (16), substitute in each fL2) the iterative definition
(12). All the steps can be retraced back to go in the opposite direction. O

Lemma 3. As a consequence of the induction hypothdsiseach (k, m, n) such that
k+m+n= N — 1we have

2 2
1- q R)'Ck—i-l,m,n = szk,m,nz4 +q ZSTk,m,nzga
—m— k
bitmin+1Tk+1mng " = 0BTkm.n21 + G 22Tk.m.n24,

1+k
ZZTk,m,nZE,

—m— -1
Atmin+1Thk+1mngd = q  24Tkmnil —q
* —1_x —k—1 *
A_(m4n+k+1) h+1mn =4 "21Tkmnid — 4 23Tk,m,nZ2;
+
RTk—Q—l,m,n = qm n(ZE]k_fk,m,nzl + ZZtk,m,nzz)a

bi(m+n+k+1)fk+l,m,n = qz?lk_fk,m,nzg + q_k_zzjfk,m,nzz- (17)
Proof. For instance, in order to get the first one, multiply on the lefyhys and byz} the

fourth and the second equation(@R), respectively; then add and collect the terms. All the
other relations are obtained in a similar way. O
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Let (k, m, n) such thak +m +n = N and apply(17)for (k — 1, m, n). For example, in
order to prove the first ofL6):

2 2
(1 = g“R)Th,mnz1 = (Z4Tk=1,m,n24 + q 23Tk—1,m,n23)21
-1 K
= (¢ Z3Tk—1m.nZ1 — 4 22Tk—1,m,n23)24
2 k-1
+4°(q

- 2
=q " n(ak+/n+n7:k,m,nz4+q bk+m+n7:k,m,n)zgs

22Tk—1,m,n24 + OZ3Th—1,m,n21)Z5

where the first and third lines are obtained by us{dg) for (k — 1, m, n). All the
other equations (16)are obtained in a similar way. Using Lemma 1 #i®) are then
proved.

4.2. Proof of (13)

In order to prove them we use the strategy adoptedif@). By substituting in(14) the
iterative definition ofr we get the following Lemma.

Lemma4. Relations(14)are true if and only if the following equations hold for> 1

ZZkal,m,n(l_qu) = _qk+223":k71,m,naf(k+m+n71)+qk_1zszfl,m,nbf(k+m+n71),
7°23T—1mn R = " T mnb—nanth—1) — 4 22Tk LTy ik —1
"G t—1mn(L— ¢°R) = QZZBTk—l,m»nblterﬂ—l + 23 Th—1m,nGoy 4 k10
Zt-rmaR = " T @ mnh-1) + @ 22Tkt mnbfy i1 (18)

We have the following Lemma:

Lemmab. As a consequence of the induction hypothdsiseachk +m +n = N — 1we
have

2 2
Tk,m,n(l —q°R) = Zztk—l,m,nz4 +q ZSTk—l,m,nZE,
Tk,m,nR = qm+n (ZZTk—l.m,nZE + Z?_Tk—l,m,nzl)»

-1 _x —k *
Tk,mnQ—(k+m+n) =4 “24Tk—1,mni1 — 4 “22Tk—1,m,ni3»

—k—1
Tkmnb—(ktman) = 0BTh—1mn21 + 4 22Tk—Lm.nZ4s
-1 k
Tk,m,naz+m+n = qm+n Zx]ifk—l,m,nz4 —q +m+nZSTk—1,m,nZ§,
1 k -1
Tk,m,an+m+n = qm+n+ Zifk—l,m,n% +q e szk—l,m,nzz- (19)

Proof. For example, in order to get the first relation, multiply on the rightband byz;
the first and the third of14), respectively, and then add. The other relations are shown in a
similar way. O
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Let (k, m, n) be such that + m + n = N and let us apply19) for (k — 1, m, n). For
example, in order to show the first (If9):

2 2
ZZtk—l,m,n(l —q¢°R)= ZZZZtk—Z,m.nZ4 +q ZZZStk—Z,m,nzz

k=1 %, —k
=4 ZZ(Q 22Tk—2,m,n24 + qz37k—2,m,nzl)
k42 1k -1
— ¢ 3(—q 2Tk omn?s + 4 T Tk—2.mn21)

k—1 k+2
=q szk—l,m,nb—(k—i-m-i-n—l) —q + 23Tk—1,m,nA—(k—1+m+n),

where we used the first, the third and the fourth of(tt@) for (k — 1, m, n). All the others
relations are obtained in a similar way. This concludes the pro¢f4)f

5. Conclusions

The bijectivity of the canonical map is a key resultto study the non-commutative geometry
of this fibration.

To this purpose it is relevant the notionmincipal Galois extensiomtroduced if7,14]
which consists of a coalgebra Galois extension with the following additional requirements
(the notations are the same as in the beginnin§eiftion 3: (i) the entwining mapy :
C®P— PRC,c®p — x(x 1(1®c)p) is bijective; (i) there exists a group like element
e € C such thatAg(p) = Y(e ® p); (iii) there exists a strong connection.

In our case the points (i) and (ii) are easily satisfied. In faet® P) = (1 ® ¢) < p can
be inverted by "1 (p®@c) = c- S71(p1)) ® p(o) ande = r(). Itis crucial thatP = A(S/)
is a.A(U,(4)-comodule and” = A(SU,(2)) a.A(U,(4))-module.

A result (Theorem 2.44) contained in the paper in prepardfi6hsolves the point (iii):
if C is a cosemisimple coalgebra, right-module quotient of an Hopf algebrd with
bijective antipode then the surjectivity of the canonical map implies its injectivity and the
existence of a strong connection (or equivariant projectivity in their terminology).

The translation map can be lifted to¢ : A(SU,(2) — A(S]) ® A(S/) by making
use of the relation§l1). We conjecture that the lifted mapis bicolinear with respect to
(1® A,) and(A, ® 1) whereA, : p — r(S~1(pa))) ® po) [14], so that it gives an explicit
expression to the strong connection.

A relevant consequence of principality is that it makes possible, in the quantum setting,
the construction of associated vector bundles. Given, in fact, any finite dimensional left
corepresentation of, (o : V — C ® V), the cotensor produdt,V turns out to be a
finitely generated and projectiv@module.

In our case for any corepresentation of spiof A(SU,(2)) one has @uantum vector
bundleand the corresponding class in the positive conK(qtél(Ej]‘)).

In[2] it was already computed the vector bundle associated to thé:mirepresentation
and its pairing with theK-homology generators. The non-triviality of this paring allows
to conclude that the coalgebra Galois extension is non-cleft. Using the formula for the
Chern—Connes character given[i} we have all we need to compute the Chern numbers
of the generic associated bundles. This will be the content of a future work.
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